
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E O C T O B E R 2 0 2 1 95

ALGORITHMS
EDITOR DORON DRUSINSKY

Naval Postgraduate School ddrusins@nps.edu

Digital Object Identifier 10.1109/MC.2021.3099044
Date of current version: 24 September 2021

Scenario-Based
Algorithmics:
Coding Algorithms
by Automatic
Composition of
Separate Concerns
David Harel, Assaf Marron, and Raz Yerushalmi , Weizmann Institute of Science

A method for programming reactive systems,

called scenario-based algorithmics, can have several

advantages, both in programming and in computer

science education. We provide new examples,

experiments, and perspectives.

Consider the following chal-
lenge: A manager in a car
dealership wishes to rear-
range the cars in the deal-

ership’s lot according to some arbi-
trary sort key, such as window-sticker
price or engine serial number. The
lot is full, and passage lanes should
not be blocked. Can the manager give
employees simple instructions to ac-
complish an efficient in-place sorting
algorithm like Quicksort—not as a
long sequence of steps but as an unor-
dered set of rules? We argue that the
answer is positive and discuss a new
approach to specifying algorithms
that embodies this answer.

Textbook specifications of pro-
cedural code for an algorithm, such
as Quicksort, binary search, or two-
phase commit, are usually accompa-
nied by a description of the key tenets
that distinguish this algorithm from
other solutions to the problem. These
explanations are needed because the

96	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

ALGORITHMS

code does not readily communicate all
of its underlying principles: import-
ant algorithmic innovations may be
hidden among steps for bookkeeping
and the handling of special conditions
or implied by a unique ordering of in-
structions and placement of parenthe-
ses, and so on. Giving functions and
variables meaningful names helps but
cannot fully fill this gap.

In Harel and Marron 2018,18 we in-
troduced scenario-based algorithmics
(SBA), a new approach to specifying
algorithms. Rather than providing
step-by-step instructions, one codes a
collection of succinct self-standing ex-
ecutable rules. Each rule, also termed
a scenario, is responsible for one aspect
of overall system behavior, stating
what must or must not be done when
certain conditions hold or following
certain sequences of events. All of the
scenarios are executed in parallel and
in lock-step synchronization with each
other. At each synchronization point,
all of the rules’ declarations are evalu-
ated and reconciled, one event is trig-
gered, all affected scenarios are noti-
fied, and, if relevant, they react to the
event and step to their next synchroni-
zation point, and the process repeats.
The advantages of the approach in-
clude ease of understanding, amena-
bility to formal and compositional
verification, and accommodation of
incremental enhancement and re-
finement. We claim that, in addition,
SBA may contribute to general human
computational thinking skills.

The SBA specification idioms we
proposed18 are taken from a program-
ming approach termed scenario-based
programming (SBP)3,8,13,14,19 as well as
behavioral programming, which was
originally intended for specifying re-
active systems.15 We believe that it is
well suited for the fine separation of
concerns present in the underlying
idea of SBA. Here, we briefly introduce
SBP, recap the proposal to use SBP for
SBA, and offer new examples, meth-
odological perspectives, and future
research directions for advancing this
approach for specifying algorithms.

SCENARIO-BASED
PROGRAMMING
SBP aims to simplify the development
of executable models of reactive sys-
tems by bringing the process closer to
the way humans think about system
behavior, adopting an interobject ap-
proach rather than the conventional
intraobject one.3,8,13 At the heart of
SBP is the scenario, describing a de-
sired or undesired aspect of behav-
ior of the system, possibly involving
multiple objects. Cohesive system
behavior emerges from a novel con-
current synchronized execution of all
scenarios.13,19

At every synchronization point,
each scenario pauses and declares
events that it requests and events that
it blocks, encoding, respectively, pres-
ently desirable and forbidden actions.
Scenarios can also declare events that
they passively wait for, thus asking
to be notified when they occur. These
declarations are collected by a central
event selection mechanism, which se-
lects and triggers one of the events that
is requested by at least one scenario but
is blocked by none. Scenarios that re-
quested or waited for this event are then
informed and can proceed to a new syn-
chronization point. Sensor and actua-
tor scenarios translate between envi-
ronmental occurrences and SBP events,
using external programming inter-
faces to cameras, motors, and so on.
The specification of requested, blocked,
and waited-for events can include sets
of events. These sets can even be in-
finite, in which case dynamic function
invocations deliver a next concrete set
element or answer a set-membership
query. Figure 1 depicts an SBP specifica-
tion of a simple reactive system.

SBP concepts are independent of
their encoding and visualization. The
first implementation was embodied
in the live sequence chart language,
where programs are modal sequence
diagrams.3,13 This was followed by im-
plementations in Java method calls and
in several other languages, including C,
C++, Erlang, JavaScript, and Python (see,
for example, Harel et al. 201219). SBP

was also implemented via an executable
controlled natural language,5 in the vi-
sual Scratch-like Blockly language, and
in special-purpose textual languages
(domain-specific languages).6

Selecting an event among all those
that are requested and not blocked
can be subjected to a policy: arbitrary,
randomized, based on predefined sce-
nario priorities and precedence, based
on look-ahead for achieving certain
outcomes,11 or based on a synthesized
controller that prescribes in advance
the selected event for every synchroni-
zation point, among others. SBP is also
amenable to model checking and com-
positional verification.10,12 The result
is a formal executable specification
system that facilitates incremental de-
velopment2,4 and is aligned naturally
with the way humans often describe
complex dynamic phenomena: detail-
ing aspects of behavior, one at a time,
while relying on a common under-
standing of how these are composed.

SCENARIO-BASED
ALGORITHMICS
SBA concepts are best explained via
examples.

A basic example: The
factorial function
Ask someone what ”n factorial” (n!) is,
and the verbal answer might be ”one
times two times three and so on, up to
n.” Standard procedural programs cal-
culate the factorial function with a sim-
ple loop of multiplications. By contrast,
the SBA specification of n factorial
shown in Figure 2 consists of a num-
ber of scenarios, which communicate
via a single event containing the string
“CALC_NEXT” and an integer. The scenar-
ios are implemented as coroutines/gen-
erators in Python, using the yield com-
mand to synchronize with each other
while declaring their sets of requested,
waited-for, or blocked events.

The scenario mult_next_actuator
reacts to occurrences of “CALC_NEXT” and
multiplies an evolving result by the
provided integer. Following the defi-
nition of n factorial as the product of

	 O C T O B E R 2 0 2 1 � 97

all integers between 1 and n, the sce-
nario multiply_all repeatedly requests
a static, randomly ordered set of CALC_
NEXT events with all of these integers.
This highlights the often hidden fact
that the multiplications in computing
the factorial function can be carried out
in any order. The scenario multiply_
only_once ensures that each factor is
used only once in computing the prod-
uct, highlighting another often-im-
plicit trait of the function. The scenario
result_monitor accesses the environ-
ment directly and prints the evolving
result; had other scenarios needed the
result, result_monitor could provide it
by requesting another type of event con-
taining this variable’s value. Should one
wish to enforce, say, a descending or-
der of multiplication, another scenario
(not shown here) can block CALC_NEXT
events if there is a higher-valued one
that was not hitherto invoked. For the
full code for this and other examples,
see our website at http://www.wisdom
.weizmann.ac.il/~bprogram/sba/.

Quicksort and the
separation of concerns
For a more elaborate algorithm, recall
the challenge of sorting cars in a dealer-
ship lot and assume that parking spots
are numbered sequentially. One might
use the naive statement that lies at the
heart of Bubble sort: (a) if a car in a given
spot has a higher sort key than the car in
the next spot, swap the locations of these
two cars; (b) repeat the process until there
are no such unordered pairs. In Harel
and Marron 2018,18 we describe in detail
an SBP implementation of Bubble sort.
The central scenario always compares
and swaps adjacent elements. Bookkeep-
ing scenarios proceed from one pair of
elements to the next, start a new pass
when ending a pass, skip the rechecking
of already-sorted prefixes of the array,
start and end the entire process, and so
on. We also discuss the merits of this
implementation of Bubble sort as com-
pared with the classical procedural code
containing two nested loops.18

We now tackle the challenge of apply-
ing SBA to Quicksort (see, for example,

Aho et al.1). Recursive descriptions of
Quicksort usually state the following:
pick a pivot element and rearrange the
array such that all elements smaller
than or equal to the pivot reside at lower
indices and those greater than the pivot
are at higher indices; then, repeat the
process for the two parts of the array
just formed by the pivot.

Here is a suggested SBA phrasing
of Quicksort in the form of rules for

rearranging the cars in the dealership
lot. The rules are given as a repeatable
program, which should be carried out
each morning, perhaps with a differ-
ent sort key every time. We also as-
sume that sort keys are accessed only
physically in or on the cars.

1.	 Every morning, before starting
this process, close the trunks
of all the cars and place marks

Wait for

Request

Request

Request

Wait for

Request

Request

Request

Wait for

While Blocking

Wait for

While Blocking

···

···

WaterLow

AddHotWater AddColdWater Stability Event Log

WaterLow

AddHot

AddHot
AddHot

AddHot

AddHot

AddHot

AddHot

WaterLow

AddCold AddCold AddCold

AddCold
AddHot
AddCold

AddColdAddCold

AddCold

FIGURE 1. SBP specifications for controlling the temperature and fluid level in a
water tank. Each scenario is given as a transition system, where the nodes represent
synchronization points. The transition edges are associated with the requested or
waited-for events in the preceding node. The scenarios AddHotWater and AddColdWa-
ter repeatedly wait for WaterLow events and then request three times the event AddHot
or AddCold, respectively. Since, by default, these six events may be triggered in any
order, a new scenario Stability is introduced, with the intent of keeping the temperature
more stable. It enforces the interleaving of AddHot and AddCold events by alternately
blocking them. The resulting execution trace is depicted in the event log.

Figure 2. The SBA specification for the factorial function, coded in SBP in Python.

98	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

ALGORITHMS

before the first car and after the
last car.

2.	 Always, after placing a mark,
look for a continuous stretch
of two or more unmarked cars
between two marks, which is
not being processed (there is
no driven car in this stretch),
start processing this stretch:
drive the farthest car in this
stretch out of its spot and
stop it next to the first spot in
the stretch.

3.	 Always, after the driven car
has just stopped by a parked
car, check if the parked car’s
sort key is greater than that of
the driven car. If so, drive that
parked car to the empty spot in
this stretch and park it there.
(Note that there will always be
one such empty spot.) If not,
drive the driven car one spot up
and stop it by that spot.

4.	 Always, after parking a car that
is not “the driven car” (this is
always a recently compared car
being parked in a higher spot),
walk down along the parked
cars from that spot to smaller
spot numbers and find the first
parked car whose sort key is
smaller than that of the driven
car. If such a car is found, drive
it to the spot that was just freed
next to the driven car, then
drive the driven car to the next
higher spot and stop it next to
it. If a parked car with a smaller
sort key is not found before
reaching the driven car, park
the driven car in the empty spot
by it.

5.	 Always, when the driven car stops
by an empty spot (rather than by a
parked car), park it there.

6.	 Always, after parking the
driven car, mark it by opening
its trunk. (This stretch is no
longer being processed and this
car is no longer a “driven car.”)

In the SBA code, the ”commands”
are represented by requests for events

such as DRIVE-CAR-TO-NEXT-TO-SPOT,
PARK-CAR-IN-SPOT, MARK-CAR, and so
on, each with its own parameter data.
Sensor scenarios retrieve sort keys
from cars and announce them to other
scenarios by requesting designated
events. Actuator scenarios actually
move the cars among locations. While
leaving some room for further effi-
ciency improvements, in these Quick-
sort instructions the next processed
partition is always the highest one in
the array, and the selected pivot is al-
ways the last item in the partition.

It is important to note that the rules
can be provided in any order, as long as
they are all considered all of the time.
The rules can also be carried out by dif-
ferent people responsible for different
rules if all agree on the names of events
and conditions. To illustrate the incre-
mentality property of SBP and hence
also of SBA, it is quite easy to add a
scenario that detects when uninvited
cars are parked at spots needed for
the sorting process and blocks certain
car-movement events until they are re-
moved, while temporarily suspending
the processing of a stretch.

The main goal of this article is to
show that many algorithms can be de-
scribed textually with such an execut-
able separation of concerns. It will then
become natural to seek appropriate pro-
gramming idioms, composition mecha-
nisms, and development methodologies
that simplify the creation of executable
SBA code for any algorithm while main-
taining such a separation of concerns.

We are not trying to address the ap-
parent nonintuitiveness of some pro-
gramming language constructs, and
SBA’s contribution is not in the optional
usage of natural language. Instead, we
want to mimic the ability of an expert
engineer to explain important aspects
of the algorithm to a novice, even when
1) such an aspect may involve multiple
nonadjacent lines of code, 2) a given
line of code serves multiple such as-
pects, and 3) a key aspect is “hidden” in
a seemingly unimportant piece of nota-
tion, like a pair of parentheses or a –1 in
an arithmetical expression.

Binary search and the fine
separation of concerns
We use an SBA implementation of bi-
nary search for an integer in an array to
illustrate fine-grain separation of con-
cerns. This implementation is similar
to a classical procedural program for bi-
nary search, except that if statements
have no else clauses; the else clauses
are handled as separate concerns. As
will become obvious, this synthetic ex-
ample is intended only to demonstrate
SBA and not necessarily to produce in-
sights into the algorithm itself.

Here is how the SBA specification
works. The B-SEARCH event guides
the search; it contains three inte-
gers: the search argument and two
indices demarcating a range within
the array where the next part of the
search should be conducted. The FOUND
and NOTFOUND events announce the
results of the search. The scenarios
are as follows:

1.	 a scenario that initiates the
process

2.	 a scenario that waits for FOUND
or NOTFOUND events and stops
the process by blocking all
subsequent events

3.	 a scenario that waits for
B-SEARCH events and, if the
search argument is smaller
than the value in the middle of
the range of the array specified
in the event, requests B-SEARCH,
with the low half of the range

4.	 a scenario that waits for
B-SEARCH events and, if the
search argument is greater
than the value in the middle of
the range of the array spec-
ified in the event, requests
B-SEARCH, with the high half of
the range

5.	 a scenario that waits for
B-SEARCH events and, if the
search argument is equal to the
value in the middle of the range
of the array specified in the
event, requests the FOUND event,
with the index of the middle of
the range

	 O C T O B E R 2 0 2 1 � 99

6.	 a scenario that waits for B-SEARCH
events and, if the range is invalid,
for example, outside of the origi-
nal array or the low end is greater
than the high end, requests the
NOTFOUND event.

See the “Programming Scenarios”
and “Classical Method Calls Versus Re-
acting to Events” sections for discus-
sions of design choices related to gran-
ularity of separation of concerns and
the differences between a standard
procedural function call and causing a
scenario to react to an event.

The sieve of Eratosthenes
and dynamic scenarios
SBA also allows for the dynamic cre-
ation and deletion of scenarios. Con-
sider the sieve of Eratosthenes al-
gorithm for printing a list of prime
numbers. In a classical programming
approach, one uses an array whose
cells correspond to integers, where
multiples of discovered primes are
marked as nonprimes and unmarked
cells are finally output sequentially
as primes. In the SBA implementation
discussed in Harel and Marron 2018,18
one of the scenarios requests, one at a
time, events that proclaim every inte-
ger as a prime, but it abandons the re-
quest if an event requested by another
scenario first proclaims that integer to
be nonprime. Another scenario waits
for any event that proclaims an integer
to be prime and dynamically creates
a higher priority scenario, which se-
quentially proclaims all multiples of
that prime to be nonprimes. In a vari-
ant of that implementation, after every
proclamation of an integer as prime, a
scenario is dynamically created that
blocks the proclamation of all multi-
ples of that integer as primes.

METHODOLOGICAL NOTES

The importance of
specification completeness
In human-to-human specification of
an algorithm, certain issues may be
left unspecified, either because they

are obvious or implicit, or because they
can be changed without violating key
requirements. Thus, in the car dealer-
ship example, we omitted instructions
for how to end the sorting process or
how to identify a stretch of unmarked
cars. For an SBA specification to be
complete and to terminate properly
rather than just stall forever, such a
specification must be explicit. We ar-
gue that distilling these seemingly
more trivial items as separate scenar-
ios adds to one’s understanding of the
overall algorithm.

Execution semantics

Explicit execution order. In classical
procedural programming, for a human
reading the code, the order by which
instructions are executed is implied
either by their location in the text or
by the semantics of constructs like if
statements, branching, while and for
loops, and so on. In SBA, such order-
ing must be specified explicitly: ”Al-
ways, after doing <this>, <do that>.”
The specification thus tells the reader
whether or not instructions that ap-
peared consecutively in the classical
procedural version of code must be ex-
ecuted in that order. Such explicit spec-
ification of order is also relied upon in
other approaches to separation and
composition of concerns. For example,
in aspect-oriented programming, pro-
grammers specify whether an aspect
function should be executed before, af-
ter, or instead of the runtime activation
of certain other program functions.

Programming scenarios. In SBA and
SBP, every scenario is coded in a pro-
gramming language and can include
multiple commands, conditions, flow
control, and even variables, as well as
rich data structures using ordinary pro-
cedural programming semantics. Thus,
engineers would face the question of
how granular to make the separation of
concerns, for example, whether or not a
scenario containing an “if-then-else”
construct should be broken up into two
separate ones. Also, when a scenario

relies on memory, its number of states
increases, making comprehension,
testing, and verification harder, and it
perhaps calls for handling the various
memory states with different scenar-
ios. In addition, when multiple scenar-
ios are interested in the same informa-
tion for different purposes, one must
decide whether to collect that infor-
mation in several scenarios or to have
it appear just in one and communicate
it to the others via events. We believe
that maintaining the delicate balance
among the different design and meth-
odology goals requires a certain effort,
but the accompanying thought process
can enrich the design at hand as well as
future ones.

Classical method calls versus react-
ing to events. Having one scenario
request an event that, when triggered,
activates actions in another, resem-
bles ordinary function or subroutine
calls. However, SBP offers additional
semantics: 1) the requester (that is,
the would-be caller) can sense when
the system triggers another event be-
fore the requested event and can re-
act to this situation by carrying out
something else and/or withdrawing
the request and 2) other scenarios can
block the triggering of the requested
event. For example, a scenario can be
dedicated to handling some critical
termination condition and can use
event blocking to force the stopping of
all other scenarios, without those sce-
narios having to constantly check for
such conditions.

Composition semantics. One of the
fundamental properties of SBP, and
hence also of SBA, is that the speci-
fications leave much of the seman-
tics of scenario composition implicit;
humans can properly understand the
scenarios and how they operate only
if they also understand and accept
the manner by which these scenarios
are composed. This means that the
event selection and scenario com-
position process, for which there are
many options (as mentioned earlier),

100	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

ALGORITHMS

must be well defined, natural, and
easy to remember. We hope that the
composition semantics of SBP and
SBA eventually becomes as intuitive
as the differences between, say, fur-
niture assembly instructions that
must be carried out sequentially, a
supermarket shopping list, where
item order does not matter, or the
safety instructions for a work tool, all
of which must be complied with all of
the time.

SBA performance
Underlying the advent of SBP was the
belief that the approach will turn out to
be suitable for even the most demand-
ing operational reactive systems. In-
deed, various hardware and software
mechanisms have been considered
for dealing with the overhead of con-
stantly synchronizing and interacting
with multiple scenarios. Turning to
SBA, we do not make a general claim
that scenario-based specifications
of classical algorithms will become
a more efficient way to execute algo-
rithms. Still, we can envision notable
advantages, at least in certain cases.
For example, an SBA specification of
Quicksort appears to be well suited
for controlling, say, an autonomous
forklift for the car dealership sorting
task since the real-time demands are
minimal. Furthermore, even when the
SBA performance is inadequate for the
final system, we argue that coding,
interpreting, and observing the exe-
cution of an SBA specification under
various conditions can yield import-
ant insights into the algorithm and the
system embedding it, including per-
formance-related ones. Such are the
insights that certain multiplications in
calculating the factorial function can
be carried out in parallel and that sort-
ing the cars in the dealership lot using
Quicksort can be parallelized across
the different stretches.

Verification of SBA specifications
As stated earlier, the formalism of
SBP specif ications enables model
checking and efficient compositional

verification, which is often hard to ac-
complish in conventional programs.
Alongside ordinary testing, such for-
mal tools can be used to confirm both
that the SBA-specified algorithm at
hand is correct and carries out the de-
sired functions and, when compared
to a classical specification of the algo-
rithm, that both versions produce the
same sequences of actions.

FUTURE RESEARCH:
EXTENDING SBA IDIOMS
The SBA specifications in the previous
Python examples use the basic idioms
of requesting, blocking, and waiting
for events, with naive event selection.
These may be enriched with priorities,
look-ahead, or controller synthesis.
Future research topics include explor-
ing richer idioms and the correspond-
ing enhanced execution semantics.
Here are some possibilities.

1.	 Since the classical Statecharts
formalism7,9 has already been
integrated with SBP in a num-
ber of ways,17,20 the applicabil-
ity of this integration to SBA
should be examined.

2.	 In Harel et al. 2019,16 SBP
scenarios represent formal
mathematical and logical
constraints on models of a
system and its environment.
The execution mechanism
applies standard constraint
resolution techniques to find
a model that complies with
the scenarios’ requirements
and to infer the applicable
next system event, which can
itself be a rich data structure.
This might be applicable to
SBA too, if certain mundane
steps can be relegated to
easily understood constraint
resolution steps.

3.	 Introduce new composition
functions like undoing or
overriding declarations of
blocked events.

4.	 The SBP and SBA execution
infrastructure and verification

tools have ready access to meta
and self-reflection information,
such as which events are being
requested, all the events that
were triggered since the begin-
ning of the run, which scenario
requested the event that was
last triggered, or the state of
a certain scenario. We plan to
explore the merits of making
this information available to
SBA scenarios.

5.	 One can encapsulate certain
patterns of code in reusable
methods and entire scenar-
ios like ”block all events of a
certain type that have already
occurred,” “keep requesting a
set of events until each of them
has occurred at least once,” and
so on.

Such enhancements of SBA may
bring the approach closer to succinct
natural language descriptions of algo-
rithms, while retaining the formality
and executability.

W e have described a scenar-
io-based approach to algo-
rithm specification, where

different algorithm steps, special prop-
erties, and other important aspects of
behavior are individually specified in
a stand-alone manner. Step-by-step
execution is derived from collective
parallel execution of all of these speci-
fication artifacts. The main benefits of
the SBA approach include clarity of the
main aspects of the specification while
retaining executability, amenability to
compositional verification, and the fa-
cilitation of incremental development
and refinement.

Clearly, more research is needed to
overcome hurdles on the road to broad
implementation and acceptance. First,
it has been our experience that the
thinking process of decomposing a
well-specified algorithm into its con-
stituent concerns is at times difficult
and may seem excessively formal. For
example, in fulfilling a requirement

	 O C T O B E R 2 0 2 1 � 101

to add 1 to all elements of an array, one
can readily write a program loop that
does exactly that, whereas the sce-
nario approach seems to require the
tedious explicit statement that this
addition must be done to all elements
of the array, and that it must be done
exactly once. This issue seems re-
lated to the difficulty in articulating
preconditions, invariants, and post-
conditions in the process of proving
program correctness. The SBA speci-
fication process might become more
natural and intuitive when it becomes
part of a set of routine tasks in soft-
ware development and is supported
by appropriate methodologies, lan-
guages, and tools, as discussed in the
“Methodological Notes” and “Future
Research: Extending SBA Idioms” sec-
tions. Finally, the development of SBA
should be accompanied with iterative
empirical studies to confirm its ex-
pected merits for software engineer-
ing and algorithm development.

ACKNOWLEDGMENTS
We thank Nimrod Talmon for initial
conversations that helped trigger this
pursuit, Ori Koren for coding some of
the initial examples, and Meir Shani for
valuable comments and discussions.

REFERENCES
1.	 A. V. Aho, J. E. Hopcroft, and J. D.

Ullman, Data Structures and Algo-
rithms. Reading, MA: Addison-Wes-
ley, 1983.

2.	 G. Alexandron, M. Armoni,
M. Gordon, and D. Harel. “Sce-
nario-based programming:
Reducing the cognitive load,
fostering abstract thinking,” in
Proc. 36th Int. Conf. Softw. Eng.
(ICSE), 2014, pp. 311–320. doi:
10.1145/2591062.2591167.

3.	 W. Damm and D. Harel, “LSCs:
Breathing life into message sequence
charts,” J. Formal Methods Syst. Des.,
vol. 19, no. 1, pp. 45–80, 2001.

4.	 M. Gordon, A. Marron, and O.
Meerbaum-Salant. “Spaghetti
for the main course? Obser-
vations on the naturalness of

scenario-based programming,”
in P roc. 17th Conf. Innovation Tech-
nol. Comput. Sci. Educ. (I T ICSE),
2012, pp. 198–203.

5.	 M. Gordon and D. Harel, “Generating
executable scenarios from natural
language,” in Proc. Int. Conf. Intell.
Text Process. Computat. Linguistics,
2009, pp. 456–467.

6.	 J. Greenyer, D. Gritzner, G. Katz,
and A. Marron. “Scenario-based
modeling and synthesis for reac-
tive systems with dynamic system
structure in ScenarioTools,” in
Proc. MoDELS 2016 Demo and
Poster Sessions, Co-located with
ACM/IEEE 19th Int. Conf. Model
Driven Eng. Languages Syst. (MoD-
ELS), 2016, pp. 16–23.

7.	 D. Harel, “Statecharts: A visual for-
malism for complex systems,”
Sci. Comput. Programming, vol. 8,
no. 3, pp. 231–274, 1987. doi:
10.1016/0167-6423(87)90035-9.

8.	 D. Harel, “Can programming be
liberated, period?” IEEE Comput.,
vol. 41, no. 1, pp. 28–37, 2008. doi:
10.1109/MC.2008.10.

9.	 D. Harel and E. Gery, “Executable
object modeling with statecharts,”
Computer, vol. 30, no. 7, pp. 31–42, July
1997. doi: 10.1109/2.596624.

10.	 D. Harel, A. Kantor, G. Katz, A.
Marron, L. Mizrahi, and G. Weiss,
“On composing and proving the
correctness of reactive behavior,” in
Proc. Int. Conf. Embedded Softw., 2013,
pp. 1–10.

11.	 D. Harel, H. Kugler, R. Marelly,
and A. Pnueli. “Smart play-out of
behavioral requirements,” in Proc.
4th Int. Conf. Formal Meth. Com-
put.-Aided Des. (FMCAD), 2002,
pp. 378–398.

12.	 D. Harel, R. Lampert, A. Marron,
and G. Weiss, “Model-check-
ing behavioral programs,”
in Proc. Int. Conf. Embedded
Softw., 2011, pp. 279–288. doi:
10.1145/2038642.2038686.

13.	 D. Harel and R. Marelly, Come, Let’s
Play: Scenario-Based Programming Us-
ing LSCs and the Play-Engine. Berlin:
Springer-Verlag, 2003.

14.	 D. Harel, A. Marron, and G.
Weiss. “Programming Coordi-
nated Scenarios in Java,” in Proc.
24th European Conf. Object-Ori-
ented Program. (ECOOP), 2010,
pp. 250–274.

15.	 D. Harel and A. Pnueli, On the Devel-
opment of Reactive Systems, volume
F-13 of NATO ASI Series. New York:
Springer-Verlag, 1985.

16.	 D. Harel, G. Katz, A. Marron, A.
Sadon, and G. Weiss, “Executing
scenario-based specification
with dynamic generation of rich
events,” in Proc. Int. Conf. Mod-
el-Driven Eng. Softw. Develop., 2019,
pp. 246–274.

17.	 D. Harel, R. Marelly, A. Marron, and S.
Szekely, “Integrating inter-object sce-
narios with intra-object statecharts
for developing reactive systems,”
IEEE Des. Test., early access, 2020. doi:
10.1109/MDAT.2020.3006805.

18.	 D. Harel and A. Marron, “Toward
scenario-based algorithmics,”
in Adventures Between Lower
Bounds and Higher Altitudes.
Berlin: Springer-Verlag, 2018,
pp. 549–567.

19.	 D. Harel, A. Marron, and G. Weiss,
“Behavioral programming,” Comm.
ACM, vol. 55, no. 7, pp. 90–100, 2012.

20.	 A. Marron, Y. Hacohen, D. Harel,
A. Mülder, and A. Terfloth.
“Embedding scenario-based
modeling in statecharts,” in Proc.
MODELS Workshops, 2018,
pp. 443–452.

DAVID HAREL is with the Weizmann
Institute of Science, Rehovot, 76100,
Israel. Contact him at david.harel@
weizmann.ac.il.

ASSAF MARRON is with the
Weizmann Institute of Science,
Rehovot, 76100, Israel. Contact him at
assaf.marron@gmail.com.

RAZ YERUSHALMI is with the
Weizmann Institute of Science,
Rehovot, 76100, Israel. Contact him
at raz.yerushalmi@weizmann.ac.il.

