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A method for programming reactive systems, 

called scenario-based algorithmics, can have several 

advantages, both in programming and in computer 

science education. We provide new examples, 

experiments, and perspectives.

Consider the following chal-
lenge: A manager in a car 
dealership wishes to rear-
range the cars in the deal-

ership’s lot according to some arbi-
trary sort key, such as window-sticker 
price or engine serial number. The 
lot is full, and passage lanes should 
not be blocked. Can the manager give 
employees simple instructions to ac-
complish an efficient in-place sorting 
algorithm like Quicksort—not as a 
long sequence of steps but as an unor-
dered set of rules? We argue that the 
answer is positive and discuss a new 
approach to specifying algorithms 
that embodies this answer.

Textbook specifications of pro-
cedural code for an algorithm, such 
as Quicksort, binary search, or two-
phase commit, are usually accompa-
nied by a description of the key tenets 
that distinguish this algorithm from 
other solutions to the problem. These 
explanations are needed because the 
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code does not readily communicate all 
of its underlying principles: import-
ant algorithmic innovations may be 
hidden among steps for bookkeeping 
and the handling of special conditions 
or implied by a unique ordering of in-
structions and placement of parenthe-
ses, and so on. Giving functions and 
variables meaningful names helps but 
cannot fully fill this gap.

In Harel and Marron 2018,18 we in-
troduced scenario-based algorithmics 
(SBA), a new approach to specifying 
algorithms. Rather than providing 
step-by-step instructions, one codes a 
collection of succinct self-standing ex-
ecutable rules. Each rule, also termed 
a scenario, is responsible for one aspect 
of overall system behavior, stating 
what must or must not be done when 
certain conditions hold or following 
certain sequences of events. All of the 
scenarios are executed in parallel and 
in lock-step synchronization with each 
other. At each synchronization point, 
all of the rules’ declarations are evalu-
ated and reconciled, one event is trig-
gered, all affected scenarios are noti-
fied, and, if relevant, they react to the 
event and step to their next synchroni-
zation point, and the process repeats. 
The advantages of the approach in-
clude ease of understanding, amena-
bility to formal and compositional 
verification, and accommodation of 
incremental enhancement and re-
finement. We claim that, in addition, 
SBA may contribute to general human 
computational thinking skills.

The SBA specification idioms we 
proposed18 are taken from a program-
ming approach termed scenario-based 
programming (SBP)3,8,13,14,19 as well as 
behavioral programming, which was 
originally intended for specifying re-
active systems.15 We believe that it is 
well suited for the fine separation of 
concerns present in the underlying 
idea of SBA. Here, we briefly introduce 
SBP, recap the proposal to use SBP for 
SBA, and offer new examples, meth-
odological perspectives, and future 
research directions for advancing this 
approach for specifying algorithms.

SCENARIO-BASED 
PROGRAMMING
SBP aims to simplify the development 
of executable models of reactive sys-
tems by bringing the process closer to 
the way humans think about system 
behavior, adopting an interobject ap-
proach rather than the conventional 
intraobject one.3,8,13 At the heart of 
SBP is the scenario, describing a de-
sired or undesired aspect of behav-
ior of the system, possibly involving 
multiple objects. Cohesive system 
behavior emerges from a novel con-
current synchronized execution of all 
scenarios.13,19

At every synchronization point, 
each scenario pauses and declares 
events that it requests and events that 
it blocks, encoding, respectively, pres-
ently desirable and forbidden actions. 
Scenarios can also declare events that 
they passively wait for, thus asking 
to be notified when they occur. These 
declarations are collected by a central 
event selection mechanism, which se-
lects and triggers one of the events that 
is requested by at least one scenario but 
is blocked by none. Scenarios that re-
quested or waited for this event are then 
informed and can proceed to a new syn-
chronization point. Sensor and actua-
tor scenarios translate between envi-
ronmental occurrences and SBP events, 
using external programming inter-
faces to cameras, motors, and so on. 
The specification of requested, blocked, 
and waited-for events can include sets 
of events. These sets can even be in-
finite, in which case dynamic function 
invocations deliver a next concrete set 
element or answer a set-membership 
query. Figure 1 depicts an SBP specifica-
tion of a simple reactive system.

SBP concepts are independent of 
their encoding and visualization. The 
first implementation was embodied 
in the live sequence chart language, 
where programs are modal sequence 
diagrams.3,13 This was followed by im-
plementations in Java method calls and 
in several other languages, including C, 
C++, Erlang, JavaScript, and Python (see, 
for example, Harel et al. 201219). SBP 

was also implemented via an executable 
controlled natural language,5 in the vi-
sual Scratch-like Blockly language, and 
in special-purpose textual languages 
(domain-specific languages).6

Selecting an event among all those 
that are requested and not blocked 
can be subjected to a policy: arbitrary, 
randomized, based on predefined sce-
nario priorities and precedence, based 
on look-ahead for achieving certain 
outcomes,11 or based on a synthesized 
controller that prescribes in advance 
the selected event for every synchroni-
zation point, among others. SBP is also 
amenable to model checking and com-
positional verification.10,12  The result 
is a formal executable specification 
system that facilitates incremental de-
velopment2,4 and is aligned naturally 
with the way humans often describe 
complex dynamic phenomena: detail-
ing aspects of behavior, one at a time, 
while relying on a common under-
standing of how these are composed.

SCENARIO-BASED 
ALGORITHMICS
SBA concepts are best explained via 
examples.

A basic example: The 
factorial function
Ask someone what ”n factorial” (n!) is, 
and the verbal answer might be ”one 
times two times three and so on, up to 
n.” Standard procedural programs cal-
culate the factorial function with a sim-
ple loop of multiplications. By contrast, 
the SBA specification of n factorial 
shown in Figure 2 consists of a num-
ber of scenarios, which communicate 
via a single event containing the string 
“CALC_NEXT” and an integer. The scenar-
ios are implemented as coroutines/gen-
erators in Python, using the yield com-
mand to synchronize with each other 
while declaring their sets of requested, 
waited-for, or blocked events.

The scenario mult_next_actuator  
reacts to occurrences of “CALC_NEXT” and 
multiplies an evolving result by the 
provided integer. Following the defi-
nition of n factorial as the product of 
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all integers between 1 and n, the sce-
nario multiply_all repeatedly requests 
a static, randomly ordered set of CALC_
NEXT events with all of these integers. 
This highlights the often hidden fact 
that the multiplications in computing 
the factorial function can be carried out 
in any order. The scenario multiply_
only_once ensures that each factor is 
used only once in computing the prod-
uct, highlighting another often-im-
plicit trait of the function. The scenario 
result_monitor accesses the environ-
ment directly and prints the evolving 
result; had other scenarios needed the 
result, result_monitor could provide it 
by requesting another type of event con-
taining this variable’s value. Should one 
wish to enforce, say, a descending or-
der of multiplication, another scenario 
(not shown here) can block CALC_NEXT 
events if there is a higher-valued one 
that was not hitherto invoked. For the 
full code for this and other examples, 
see our website at http://www.wisdom 
.weizmann.ac.il/~bprogram/sba/.

Quicksort and the 
separation of concerns
For a more elaborate algorithm, recall 
the challenge of sorting cars in a dealer-
ship lot and assume that parking spots 
are numbered sequentially. One might 
use the naive statement that lies at the 
heart of Bubble sort: (a) if a car in a given 
spot has a higher sort key than the car in 
the next spot, swap the locations of these 
two cars; (b) repeat the process until there 
are no such unordered pairs. In Harel 
and Marron 2018,18 we describe in detail 
an SBP implementation of Bubble sort. 
The central scenario always compares 
and swaps adjacent elements. Bookkeep-
ing scenarios proceed from one pair of 
elements to the next, start a new pass 
when ending a pass, skip the rechecking 
of already-sorted prefixes of the array, 
start and end the entire process, and so 
on. We also discuss the merits of this 
implementation of Bubble sort as com-
pared with the classical procedural code 
containing two nested loops.18

We now tackle the challenge of apply-
ing SBA to Quicksort (see, for example, 

Aho et al.1). Recursive descriptions of 
Quicksort usually state the following: 
pick a pivot element and rearrange the 
array such that all elements smaller 
than or equal to the pivot reside at lower 
indices and those greater than the pivot 
are at higher indices; then, repeat the 
process for the two parts of the array 
just formed by the pivot.

Here is a suggested SBA phrasing 
of Quicksort in the form of rules for 

rearranging the cars in the dealership 
lot. The rules are given as a repeatable 
program, which should be carried out 
each morning, perhaps with a differ-
ent sort key every time. We also as-
sume that sort keys are accessed only 
physically in or on the cars.

1.	 Every morning, before starting 
this process, close the trunks 
of all the cars and place marks 
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FIGURE 1. SBP specifications for controlling the temperature and fluid level in a 
water tank. Each scenario is given as a transition system, where the nodes represent 
synchronization points. The transition edges are associated with the requested or 
waited-for events in the preceding node. The scenarios AddHotWater and AddColdWa-
ter repeatedly wait for WaterLow events and then request three times the event AddHot 
or AddCold, respectively. Since, by default, these six events may be triggered in any 
order, a new scenario Stability is introduced, with the intent of keeping the temperature 
more stable. It enforces the interleaving of AddHot and AddCold events by alternately 
blocking them. The resulting execution trace is depicted in the event log.  

Figure 2. The SBA specification for the factorial function, coded in SBP in Python.
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before the first car and after the 
last car.

2.	 Always, after placing a mark, 
look for a continuous stretch 
of two or more unmarked cars 
between two marks, which is 
not being processed (there is 
no driven car in this stretch), 
start processing this stretch: 
drive the farthest car in this 
stretch out of its spot and 
stop it next to the first spot in 
the stretch.

3.	 Always, after the driven car 
has just stopped by a parked 
car, check if the parked car’s 
sort key is greater than that of 
the driven car. If so, drive that 
parked car to the empty spot in 
this stretch and park it there. 
(Note that there will always be 
one such empty spot.) If not, 
drive the driven car one spot up 
and stop it by that spot.

4.	 Always, after parking a car that 
is not “the driven car” (this is 
always a recently compared car 
being parked in a higher spot), 
walk down along the parked 
cars from that spot to smaller 
spot numbers and find the first 
parked car whose sort key is 
smaller than that of the driven 
car. If such a car is found, drive 
it to the spot that was just freed 
next to the driven car, then 
drive the driven car to the next 
higher spot and stop it next to 
it. If a parked car with a smaller 
sort key is not found before 
reaching the driven car, park 
the driven car in the empty spot 
by it.

5.	 Always, when the driven car stops 
by an empty spot (rather than by a 
parked car), park it there.

6.	 Always, after parking the 
driven car, mark it by opening 
its trunk. (This stretch is no 
longer being processed and this 
car is no longer a “driven car.”)

In the SBA code, the ”commands” 
are represented by requests for events 

such as DRIVE-CAR-TO-NEXT-TO-SPOT, 
PARK-CAR-IN-SPOT, MARK-CAR, and so 
on, each with its own parameter data. 
Sensor scenarios retrieve sort keys 
from cars and announce them to other 
scenarios by requesting designated 
events. Actuator scenarios actually 
move the cars among locations. While 
leaving some room for further effi-
ciency improvements, in these Quick-
sort instructions the next processed 
partition is always the highest one in 
the array, and the selected pivot is al-
ways the last item in the partition.

It is important to note that the rules 
can be provided in any order, as long as 
they are all considered all of the time. 
The rules can also be carried out by dif-
ferent people responsible for different 
rules if all agree on the names of events 
and conditions. To illustrate the incre-
mentality property of SBP and hence 
also of SBA, it is quite easy to add a 
scenario that detects when uninvited 
cars are parked at spots needed for 
the sorting process and blocks certain 
car-movement events until they are re-
moved, while temporarily suspending 
the processing of a stretch.

The main goal of this article is to 
show that many algorithms can be de-
scribed textually with such an execut-
able separation of concerns. It will then 
become natural to seek appropriate pro-
gramming idioms, composition mecha-
nisms, and development methodologies 
that simplify the creation of executable 
SBA code for any algorithm while main-
taining such a separation of concerns.

We are not trying to address the ap-
parent nonintuitiveness of some pro-
gramming language constructs, and 
SBA’s contribution is not in the optional 
usage of natural language. Instead, we 
want to mimic the ability of an expert 
engineer to explain important aspects 
of the algorithm to a novice, even when 
1) such an aspect may involve multiple 
nonadjacent lines of code, 2) a given 
line of code serves multiple such as-
pects, and 3) a key aspect is “hidden” in 
a seemingly unimportant piece of nota-
tion, like a pair of parentheses or a –1 in 
an arithmetical expression.

Binary search and the fine 
separation of concerns
We use an SBA implementation of bi-
nary search for an integer in an array to 
illustrate fine-grain separation of con-
cerns. This implementation is similar 
to a classical procedural program for bi-
nary search, except that if statements 
have no else clauses; the else clauses 
are handled as separate concerns. As 
will become obvious, this synthetic ex-
ample is intended only to demonstrate 
SBA and not necessarily to produce in-
sights into the algorithm itself.

Here is how the SBA specification 
works. The B-SEARCH event guides 
the search; it contains three inte-
gers: the search argument and two 
indices demarcating a range within 
the array where the next part of the 
search should be conducted. The FOUND 
and NOTFOUND events announce the 
results of the search. The scenarios 
are as follows:

1.	 a scenario that initiates the 
process

2.	 a scenario that waits for FOUND 
or NOTFOUND events and stops 
the process by blocking all 
subsequent events

3.	 a scenario that waits for 
B-SEARCH events and, if the 
search argument is smaller 
than the value in the middle of 
the range of the array specified 
in the event, requests B-SEARCH, 
with the low half of the range

4.	 a scenario that waits for 
B-SEARCH events and, if the 
search argument is greater 
than the value in the middle of 
the range of the array spec-
ified in the event, requests 
B-SEARCH, with the high half of 
the range

5.	 a scenario that waits for 
B-SEARCH events and, if the 
search argument is equal to the 
value in the middle of the range 
of the array specified in the 
event, requests the FOUND event, 
with the index of the middle of 
the range
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6.	 a scenario that waits for B-SEARCH  
events and, if the range is invalid, 
for example, outside of the origi-
nal array or the low end is greater 
than the high end, requests the 
NOTFOUND event.

See the “Programming Scenarios” 
and “Classical Method Calls Versus Re-
acting to Events” sections for discus-
sions of design choices related to gran-
ularity of separation of concerns and 
the differences between a standard 
procedural function call and causing a 
scenario to react to an event.

The sieve of Eratosthenes 
and dynamic scenarios
SBA also allows for the dynamic cre-
ation and deletion of scenarios. Con-
sider the sieve of Eratosthenes al-
gorithm for printing a list of prime 
numbers. In a classical programming 
approach, one uses an array whose 
cells correspond to integers, where 
multiples of discovered primes are 
marked as nonprimes and unmarked 
cells are finally output sequentially 
as primes. In the SBA implementation 
discussed in Harel and Marron 2018,18 
one of the scenarios requests, one at a 
time, events that proclaim every inte-
ger as a prime, but it abandons the re-
quest if an event requested by another 
scenario first proclaims that integer to 
be nonprime. Another scenario waits 
for any event that proclaims an integer 
to be prime and dynamically creates 
a higher priority scenario, which se-
quentially proclaims all multiples of 
that prime to be nonprimes. In a vari-
ant of that implementation, after every 
proclamation of an integer as prime, a 
scenario is dynamically created that 
blocks the proclamation of all multi-
ples of that integer as primes.

METHODOLOGICAL NOTES

The importance of 
specification completeness
In human-to-human specification of 
an algorithm, certain issues may be 
left unspecified, either because they 

are obvious or implicit, or because they 
can be changed without violating key 
requirements. Thus, in the car dealer-
ship example, we omitted instructions 
for how to end the sorting process or 
how to identify a stretch of unmarked 
cars. For an SBA specification to be 
complete and to terminate properly 
rather than just stall forever, such a 
specification must be explicit. We ar-
gue that distilling these seemingly 
more trivial items as separate scenar-
ios adds to one’s understanding of the 
overall algorithm.

Execution semantics

Explicit execution order. In classical 
procedural programming, for a human 
reading the code, the order by which 
instructions are executed is implied 
either by their location in the text or 
by the semantics of constructs like if 
statements, branching, while and for 
loops, and so on. In SBA, such order-
ing must be specified explicitly: ”Al-
ways, after doing <this>, <do that>.” 
The specification thus tells the reader 
whether or not instructions that ap-
peared consecutively in the classical 
procedural version of code must be ex-
ecuted in that order. Such explicit spec-
ification of order is also relied upon in 
other approaches to separation and 
composition of concerns. For example, 
in aspect-oriented programming, pro-
grammers specify whether an aspect 
function should be executed before, af-
ter, or instead of the runtime activation 
of certain other program functions.

Programming scenarios. In SBA and 
SBP, every scenario is coded in a pro-
gramming language and can include 
multiple commands, conditions, flow 
control, and even variables, as well as 
rich data structures using ordinary pro-
cedural programming semantics. Thus, 
engineers would face the question of 
how granular to make the separation of 
concerns, for example, whether or not a 
scenario containing an “if-then-else” 
construct should be broken up into two 
separate ones. Also, when a scenario 

relies on memory, its number of states 
increases, making comprehension, 
testing, and verification harder, and it 
perhaps calls for handling the various 
memory states with different scenar-
ios. In addition, when multiple scenar-
ios are interested in the same informa-
tion for different purposes, one must 
decide whether to collect that infor-
mation in several scenarios or to have 
it appear just in one and communicate 
it to the others via events. We believe 
that maintaining the delicate balance 
among the different design and meth-
odology goals requires a certain effort, 
but the accompanying thought process 
can enrich the design at hand as well as 
future ones.

Classical method calls versus react-
ing to events. Having one scenario 
request an event that, when triggered, 
activates actions in another, resem-
bles ordinary function or subroutine 
calls. However, SBP offers additional 
semantics: 1) the requester (that is, 
the would-be caller) can sense when 
the system triggers another event be-
fore the requested event and can re-
act to this situation by carrying out 
something else and/or withdrawing 
the request and 2) other scenarios can 
block the triggering of the requested 
event. For example, a scenario can be 
dedicated to handling some critical 
termination condition and can use 
event blocking to force the stopping of 
all other scenarios, without those sce-
narios having to constantly check for 
such conditions.

Composition semantics. One of the 
fundamental properties of SBP, and 
hence also of SBA, is that the speci-
fications leave much of the seman-
tics of scenario composition implicit; 
humans can properly understand the 
scenarios and how they operate only 
if they also understand and accept 
the manner by which these scenarios 
are composed. This means that the 
event selection and scenario com-
position process, for which there are 
many options (as mentioned earlier), 
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must be well defined, natural, and 
easy to remember. We hope that the 
composition semantics of SBP and 
SBA eventually becomes as intuitive 
as the differences between, say, fur-
niture assembly instructions that 
must be carried out sequentially, a 
supermarket shopping list, where 
item order does not matter, or the 
safety instructions for a work tool, all 
of which must be complied with all of 
the time.

SBA performance
Underlying the advent of SBP was the 
belief that the approach will turn out to 
be suitable for even the most demand-
ing operational reactive systems. In-
deed, various hardware and software 
mechanisms have been considered 
for dealing with the overhead of con-
stantly synchronizing and interacting 
with multiple scenarios. Turning to 
SBA, we do not make a general claim 
that scenario-based specifications 
of classical algorithms will become 
a more efficient way to execute algo-
rithms. Still, we can envision notable 
advantages, at least in certain cases. 
For example, an SBA specification of 
Quicksort appears to be well suited 
for controlling, say, an autonomous 
forklift for the car dealership sorting 
task since the real-time demands are 
minimal. Furthermore, even when the 
SBA performance is inadequate for the 
final system, we argue that coding, 
interpreting, and observing the exe-
cution of an SBA specification under 
various conditions can yield import-
ant insights into the algorithm and the 
system embedding it, including per-
formance-related ones. Such are the 
insights that certain multiplications in 
calculating the factorial function can 
be carried out in parallel and that sort-
ing the cars in the dealership lot using 
Quicksort can be parallelized across 
the different stretches.

Verification of SBA specifications
As stated earlier, the formalism of 
SBP specif ications enables model 
checking and efficient compositional 

verification, which is often hard to ac-
complish in conventional programs. 
Alongside ordinary testing, such for-
mal tools can be used to confirm both 
that the SBA-specified algorithm at 
hand is correct and carries out the de-
sired functions and, when compared 
to a classical specification of the algo-
rithm, that both versions produce the 
same sequences of actions.

FUTURE RESEARCH: 
EXTENDING SBA IDIOMS
The SBA specifications in the previous 
Python examples use the basic idioms 
of requesting, blocking, and waiting 
for events, with naive event selection. 
These may be enriched with priorities, 
look-ahead, or controller synthesis. 
Future research topics include explor-
ing richer idioms and the correspond-
ing enhanced execution semantics. 
Here are some possibilities.

1.	 Since the classical Statecharts 
formalism7,9 has already been 
integrated with SBP in a num-
ber of ways,17,20 the applicabil-
ity of this integration to SBA 
should be examined.

2.	 In Harel et al. 2019,16 SBP 
scenarios represent formal 
mathematical and logical 
constraints on models of a 
system and its environment. 
The execution mechanism 
applies standard constraint 
resolution techniques to find 
a model that complies with 
the scenarios’ requirements 
and to infer the applicable 
next system event, which can 
itself be a rich data structure. 
This might be applicable to 
SBA too, if certain mundane 
steps can be relegated to 
easily understood constraint 
resolution steps.

3.	 Introduce new composition 
functions like undoing or 
overriding declarations of 
blocked events.

4.	 The SBP and SBA execution 
infrastructure and verification 

tools have ready access to meta 
and self-reflection information, 
such as which events are being 
requested, all the events that 
were triggered since the begin-
ning of the run, which scenario 
requested the event that was 
last triggered, or the state of 
a certain scenario. We plan to 
explore the merits of making 
this information available to 
SBA scenarios.

5.	 One can encapsulate certain 
patterns of code in reusable 
methods and entire scenar-
ios like ”block all events of a 
certain type that have already 
occurred,” “keep requesting a 
set of events until each of them 
has occurred at least once,” and 
so on.

Such enhancements of SBA may 
bring the approach closer to succinct 
natural language descriptions of algo-
rithms, while retaining the formality 
and executability.

W e have described a scenar-
io-based approach to algo-
rithm specification, where 

different algorithm steps, special prop-
erties, and other important aspects of 
behavior are individually specified in 
a stand-alone manner. Step-by-step 
execution is derived from collective 
parallel execution of all of these speci-
fication artifacts. The main benefits of 
the SBA approach include clarity of the 
main aspects of the specification while 
retaining executability, amenability to 
compositional verification, and the fa-
cilitation of incremental development 
and refinement.

Clearly, more research is needed to 
overcome hurdles on the road to broad 
implementation and acceptance. First, 
it has been our experience that the 
thinking process of decomposing a 
well-specified algorithm into its con-
stituent concerns is at times difficult 
and may seem excessively formal. For 
example, in fulfilling a requirement 
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to add 1 to all elements of an array, one 
can readily write a program loop that 
does exactly that, whereas the sce-
nario approach seems to require the 
tedious explicit statement that this 
addition must be done to all elements 
of the array, and that it must be done 
exactly once. This issue seems re-
lated to the difficulty in articulating 
preconditions, invariants, and post-
conditions in the process of proving 
program correctness. The SBA speci-
fication process might become more 
natural and intuitive when it becomes 
part of a set of routine tasks in soft-
ware development and is supported 
by appropriate methodologies, lan-
guages, and tools, as discussed in the 
“Methodological Notes” and “Future 
Research: Extending SBA Idioms” sec-
tions. Finally, the development of SBA 
should be accompanied with iterative 
empirical studies to confirm its ex-
pected merits for software engineer-
ing and algorithm development. 
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